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Magnetic fields in materials, B and H the truth at last. 
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1.  How not to teach it. 

 

Electromagnetism has a bad reputation as one of the most difficult subjects in an 

undergraduate degree.  This is not because it is inherently difficult, but because it has been 

very badly taught by teachers who do not really understand it, and who try to oversimplify 

the theory so that they can move quickly on to applications.  This leads to frustration for the 

cleverer students who notice that the arguments are far from watertight.   

However there are also some good reasons for this situation.   One is that electromagnetism is 

used by physicists, materials scientists and electrical engineers, all of whom have different 

requirements.  This it shares with another difficult subject, thermodynamics.  However all 

thermodynamics can be traced back to the two (or three) fundamental laws, like Euclid's 

geometry.  This is not possible with electromagnetism.  The magnetic field can only be 

derived from a definite integral, or partial differential equations, which are much more 

difficult concepts.   The structure is a bit like a semi-circular arch in which various stones are 

fitted in, but only when the last is added does the whole thing stand up, particularly when the 

theory of relativity is incorporated.    

Early attempts to avoid this by defining fields experimentally from the force on a current fail 

in solids such as iron, where the stress in a magnetic field is extremely complex, (1).  Forces 

on bodies in liquids give apparently simple results, but the simplicity is misleading. This 

macroscopic force approach led to a controversy between Kennelly and Sommerfeld  on the 

definition of magnetic moment.  One wanted to define it terms of the torque  on a magnet due 

to H in the fluid, the other due to B. (Note that neither made any reference to fields inside the 

material, these were applied fields in the fluid). Both definitions meant the magnetic moment 

of an ideal permanent magnet changed when the magnet was immersed in the fluid since they 

included the magnetisation of the fluid.  This is absurd to anyone familiar with the physics of 

permanent magnets. In fact one theory only works with long thin magnets, the other only 

with short fat ones (2). The idea of defining fields inside materials from forces on bodies in 

fluids due to external fields was quite dotty from the start.  These forces are a complex 

combination of hydrostatic and magnetic forces and give no insight into what happens inside 

solids.  

Electrical engineers may be anxious to avoid considering materials on an atomic scale, but 

this is the only sensible way to do it if we are to understand the fundamentals. The alternative 
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is just to accept some complex differential equations to be solved, which is certainly not 

satisfactory for teaching undergraduates in Physics or Engineering, although it is acceptable 

for Mathematicians. 

It is essential to separate out the theory in free space from that in materials, although with a 

knowledge of the physics of materials, equations can be found which apply to both. Linear 

magnetic materials are the most difficult since the magnetisation is determined not only by 

the applied field but also the field due to the magnetisation itself.   This large negative 

feedback in ferromagnetic materials leads to counterintuitive results, such as that the 

magnetisation of a sphere in an applied field is virtually independent of its permeability, 

provided this is greater than about 10.  

Unfortunately most undergraduate courses persist in beginning with linear materials, 

although we now have virtually perfect permanent magnets with almost constant 

magnetisation in large reverse fields which are much easier to understand. Before the recent 

advances in magnetic materials permanent magnets were very far from ideal (i.e. constant 

magnetisation), so the subject concentrated on linear materials, with permanent magnets as 

deviations from linearity   It is however essential to introduce the magnetisation as a 

fundamental field at the very beginning.   Once undergraduates get the impression that 

B=µΗΗΗΗ is a fundamental equation they will never understand the subject.  Describing 

ferromagnets and permanent magnets as non-linear versions of this equation is like describing 

plastic flow and fracture mechanics as non-linear elasticity.  Some equations may work, but 

there is no understanding. 

Another source of confusion is the idea that H in a material is equal to the ‘external field’, 

(defined in §4.3).  This is the fault of physicists who normally are only interested in long thin 

samples parallel to an external field, or very low susceptibility materials.   These are the only 

situations where it is true.    It makes no sense for electrical engineers, a wire carrying a 

current does not have an external field but we still need to define H in the material.   This 

confusion led to some erroneous papers in the field of high temperature superconductors 

where the first single crystals were thin sheets with large demagnetising factors. Sometimes 

used is the term 'internal field' which is equally misleading, (see below 4.2§ for a discussion 

of H). 

There was no need for this confusion.   Lorentz had introduced the idea that B was the 

average of microscopic fields on an atomic scale at the beginning of the twentieth century. 

This was developed by physics texts in the thirties into a rigorous and comprehensible 

account , by for example Landau and Lifshitz (3), although their version is a little 

mathematical.  However the mathematics is not essential. 

It has taken a long time for these ideas to filter through to text books and undergraduate 

courses, they certainly had not reached my Physics course in Cambridge in the 1960s. The 

situation has improved greatly in the last fifty years, although many misconceptions remain.  

I cannot count how many Ph.D students I have examined who have presented me with pages 

of magnetisation curves of superconductors, but who were unable to define what was meant 

by magnetisation.   

 

 

2. How to teach it. 

 

2.1. The Magnetic field in free space.  

This is dealt with in more detail in a section on Maxwell’s equations, which will be assumed 

in the free space version. However we do need to see where the equations come from.   The 

first equations were derived by Biot and Savart using the force between currents and 

permanent magnets.  By regarding the end of a magnet as a pole, like a point charge, they 
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were able to deduce the magnetic field from a current element.   This was a major 

achievement as the field cannot be measured directly, as can the electrostatic field from a 

charge, since all currents must flow in a complete circuit.  

More accessible experimental results are forces on small current loops which are found to be 

the same as between two electrostatic dipoles, if we define the moment of the loops by m=iδδδδs 

where i is its current and δδδδS the area.  From this we can define a field which in free space we 

can call B or H, only the units differ by a factor µo .    

It is more convenient to use Tesla for both so that the µo only appears in force expressions. 

(The SI unit is A/m, but this is falling out of use). The field is defined similarly to the 

electrostatic field so that forces and torques on a dipole can expressed in terms of the 

magnetic field at that dipole due to other sources.  In free space we only need one field. 

Since this is a dipole field  div B=0, (Gauss theorem)   and we can show from either the 

dipole picture or the Biot-Savart law that curl B=µo J  (Ampere's circuital theorem) at 

frequencies below those for which the displacement current is significant.  This essentially 

means the wavelength must be much larger than the apparatus, ( timescales can nevertheless 

be long), and is the regime considered in most of  this article . 

Vector analysis shows the two derivations are equivalent.  Although the idea of magnetism as 

due to magnetic poles, like point charges, was an obvious model, it was recognised early on 

that magnetism might be due to microscopic currents.  The concept of magnetic poles 

remains a useful, if unphysical, technique for solving a number of magnetic problems.  

However I prefer to use the equivalence between magnetic and electrostatic problems where 

the poles are replaced by charges, as this is more realistic. The algebra is the same. 

 

 2222....2222....  εεεεo and µµµµo 

  These fundamental constants have no connection with permeability or permittivity, which 

are material parameters discussed below (§2.3.4).  They are a relic of the time when most 

materials were linear, atoms were not known about,  and physicists wanted to treat fields in 

materials and free space in a unified theory.  This article shows this can be done, but only 

through an understanding of the atomic nature of materials. 

The most fundamental constant is εo which is the constant giving the force between charges.   

Until special relativity we needed another constant giving the force between currents, µo.  We 

could then derive the velocity of light, c.  However if we compare the force between two 

lines of charge when they are stationary and when one is moving with a velocity v, relativity 

tells us the force changes by a factor 1+v2/c2  where c is the velocity of light.   This extremely 

small change,  (electron drift velocities are only a few kilometres per hour), can be expressed 

as the magnetic force between two parallel currents.  The large electrostatic forces sum to 

zero for wires since the proton and electron forces in a solid cancel .  The magnetic force is a 

relativistic correction to the electrostatic force and the fact that we can use this to drive our 

trains only serves to demonstrate how extremely strong electrostatic forces can be. 

To take an example, suppose we take a kilogram of salt and split it into Sodium ions and 

Chlorine ions. We put the Sodium ions on Cape Wrath at the North West tip of Scotland and 

the Chlorine ions in Dover about 1000km away. How easy would it be to measure the force 

between them?  The answer is quite easily, it is 2.4 million metric tonnes.  εo is a very small 

number. 

Since c might be regarded as a more fundamental constant then either εo or µo, theoretical 

physicists usually use εo  and c, rather than εo  and µo, in Maxwell's equations.  However this 

would be inconvenient for engineers and solid state physicists.  

None of this affects the definition of units, which has to be done using the most accurate 

experimental method, rather than the most fundamental constant.   We can measure the force 
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between currents much more accurately than the force between charges so all our electrical 

units are derived by defining µo to be 4πx10-7 henry/m,  and the force between currents 

according to the Biot-Savart law.  This determines the ampere and hence the coulomb and all 

other electrical units. 

 

 

2.2. Maxwell’s Equations in a Magnetic  Material, (not Superconductors). 

Fields in materials are defined in terms of averages of local fields.  The scale on which we 

average is immaterial provide we are consistent in averaging all fields on the same scale.  In a 

homogeneous material a volume with a large number of atoms is sufficient, while still being much 

smaller than the dimensions of a macroscopic body.  In a multiphase alloy, or a ferromagnetic 

material with magnetic domains it would need to be on a scale large compared with the 

microstructure.  Whatever it is, the fields will be referred to as 'local' fields, as opposed to fields 

on an atomic scale which will be called 'microscopic' fields. 

The most fundamental and universal field is the flux density B which is defined as the local 

average of the microscopic free space field, defined above. It is derived from all currents 

including electron orbital motion and spin. This applies to all materials, (including 

superconductors).  

In this section we show how an array of dipoles can be averaged to give a macroscopic equivalent 

current from which the average field can be found.  Since this is so central to our understanding 

two methods will be used.  The first uses a specific dipole array which can be generalised if 

necessary.  The second is a reasonably rigorous derivation of Ampères relation in a material.  

 

2.3.1. Magnetisation 

Magnetic materials consist of spinning electrons and orbiting electrons each of which behaves as 

a dipole at distances large compared with the size of an atom.   The local magnetisation M is 

defined as the sum of the magnetic moments over a small volume, divided by the volume 

 

  
Fig.1.   (a) A dipole array.        (b) Larger dipoles with the         (c) The Equivalent   

                                                                 same magnetisation.                      surface Current. 

Figure.1 shows the cross section of a square rod with an array of square dipoles pointing along the 

axis.  They are squares of side a, each carrying a current i, area δs, and with centres separated by 

d in x, and y directions.  A similar array is placed at a distance d below this so that in the z 

direction the centres of the dipoles coincide, making an array of solenoids.   Then M=ia2/d3 .  Also 

we can regard the dipole loops as adjacent turns in a long solenoid with a current density i/d.  The 

flux density in each is µoi/d inside the solenoid and zero outside so the average is :- 

 B = µoi / d( ) a / d( )
2

= µoM   (0.1) 

This is the conventional result for a long permanent magnet in zero external field.  
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Now let us expand each loop so that it just touches its neighbours.  At the same time we reduce 

the currents so that iδS and hence m remain the same.  We multiply the edge length by d/a and 

divide the current by (d/a)2   The dipole moment of each is unaltered so that fields outside the 

body are unchanged.   Also the magnetisation is unchanged.  However now all the internal 

currents cancel leaving only a surface current i(a/d)2/a=M.    In other words we can replace the 

magnetisation by a surface current  of M A/m in free space and get the same external field outside 

the sample.   

Fields inside the sample are more problematical, and done properly below (§2.3.2),  but it can be 

seen that the process above keeps the same average field in the sample, as well as the same field 

outside.   Although this seems a little artificial it is not difficult to extend the argument to a more 

general array.  We can change the shape and position of dipoles provided we keep the moment 

and magnetisation constant.  

More general is the case where the magnetisation is not uniform.  Suppose that instead of identical 

currents i, each loop has a current δi greater than its neighbour as we go along the x axis.  Now the 

currents no longer cancel,  In fig.1  there will be a net current δ along each line in the y 

direction.   The current density is:- 

 Jy = δ i d 2 / a2( ) / a2 = −dM z / dx   (0.2) 

This is one component of the general equation J=curl(M) which can be used to turn a 

magnetisation into an 'equivalent' current density.   Here equivalent means a current density in 

free space with the same average field on a local scale at all points inside and outside the sample. 

Replacing the magnetisation with surface currents equal to the parallel component of a uniform M 

is a very useful technique, particularly for permanent magnets.  However the following is more 

rigorous and better suited to bulk current densities, leading directly to Maxwell’s equations in 

materials.   

 

 

2.3.2 Maxwell's equation for H in a material 

Firstly we average the microscopic equation div b=0, where b is the microscopic field. To average 

we integrate each component of b over a small volume and divide by the volume to give the 

macroscopic equation div B=0. 

The averaging of the current density is more complex. 

 
Fig.2. A random array of dipoles in a thickness δl projected onto the xy plane.  The dot is the 

projection of the line element δl perpendicular to the paper. It happens to intersect a current in this 

plane 

 

On a microscopic scale Ampères theorem states that  ∫b.dl=µo I  so on averaging ∫B.d=µo I̅.  I̅ is 

the mean current, which for the moment we assume to be due to only the local atomic dipoles.  

Hence we need to work out the average current intersected by a line in a material containing small 

current loops.  Figure 2 shows the projection of the loops of the z component of the magnetisation 

onto the xy plane for a length δl in the z direction.   The line δl is then a point in this plane and the 

probability of it lying within a particular loop of area δS is δS/A where A is the area of the array.  

δS
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If the loop is intersected there will be a contribution to the line integral of B of i where i is the 

current in the loop.  Otherwise there will be no contribution.  Therefore the mean contribution will 

be the current multiplied by the probability, iδS/A or m/A where m is the moment of the loop.  

The total current for the volume A .δl is therefore Σm/A for this volume.  Now the magnetisation 

M is defined as Σm/(Aδl), so  I̅ = M δl.  Since I̅  is the current due to localised dipoles we must add 

any macroscopic current I to this mean current to get the total field.   

If we divide the currents in this way between atomic dipoles and macroscopic transport currents I, 

and include components of M in other directions, then Ampères theorem becomes :- 

  

    (0.3) 

 

 We now define  ΗΗΗΗ====B/µo − M so that equation (0.3) becomes  :- 

 

   (0.4) 

or locally   (0.5) 

 

This shows that by taking averages we can write Maxwell's equations in magnetic materials in the 

same form as in free space, provided we first introduce an extra vector field M, the magnetisation.    

We must also define another field H by ΗΗΗΗ====B/µo − M. (Superconductors need a different approach 

but it can still be done).  Only two of the fields B,H and M are independent. 

It would have been much better to leave out the µo so that everything could be measured in Tesla, 

and the µo, would then only appear in expressions for forces and energies, but it is probably too 

late to change this now.  

Purists may feel that introducing a specific physical model is inelegant and unnecessary since the 

final equations do not depend on it, and it is certainly not how Maxwell did it, but I think it helps 

to understand what is going on.   

 

 

2.2.3. The displacement current 

Although in general this article is confined to low frequencies, the displacement current  in 

materials is quite easy to incorporate. The displacement current was introduced by Maxwell 

and was one of his greatest insights since it led to the prediction of electromagnetic waves. 

We need to be able to apply Ampères circuital theorem to a circuit with a capacitor.  If this 

contains a dielectric it is clear that the oscillating electrons constitute an AC current which is 

not a transport current, but which must produce a magnetic field.    This current density is 

J=qρv where q is the charge on each atom, ρ the atomic density and v the velocity of the 

electron.  Now the polarisation P=ρqa where a is the displacement of the charge, so the 

current density is J=dP/dt. 

However a capacitor might only contain free space so there must be another contribution to 

the current if the magnetic field is not to be ambiguous.  The way Maxwell used to avoid an 

ambiguity in Ampères relation, (it is not the only possible one), is to add a term εodE/dt .   

Then  

   (0.6) 

We define D in a material as εoE+P,  where E is the average of the microscopic electric field, so 

   (0.7) 

This is the general form of Maxwell's equation and it led directly to the prediction of 

electromagnetic waves. 
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Writing (0.7) in this way removes the ambiguity between polarisation currents and transport 

currents, which is a bit unclear in polymers.  Here electrons can travel quite long distances over 

several seconds, or longer, before falling into a deep hole.  Until they stop they are a transport 

current but when they stop they are polarisation.  However the sum of the transport current and  

displacement current remains the same. 

 

2.3.4. Susceptibility and Permeability 

In many materials the magnetisation is proportional to the field on the atom and all average 

fields are then linearly related so we can write M=χH where χ is a material parameter, the 

susceptibility.  Then  where  and is called the relative 

permeability. 

Note that it is only at this late stage in the development of the subject that the idea of a 

susceptibility or permeability is introduced. Their usefulness is limited to certain materials, 

and the results for large permeabilities  are often counterintuitive due to demagnetising 

effects.  They do not appear in Maxwell's equations except in the very misleading names for 

εo and µo as the permeabilities and permittivity’s of free space respectively. 

 

 

3. Experimental Justification. 

There have been a few experiments designed to show that B is the average of the microscopic 

field. (I am indebted to Dr.Alan Wolsky for these references). The first was by Rasetti  (4) 

who analysed the deflection of cosmic rays in magnetised iron.  He found that if the particle 

is moving fast enough the deflection is that expected from B in the material.  This is because 

a fast particle samples the field in a random way. Slower particles, like muons, can be 

deflected into regions between atoms with different fields so see a different mean.  The 

theory was described by Wannier (5).  

One problem is that the particles must pass through an electron if they are to sample the 

average field, and the cosmic particles, as well as the neutrons used in later experiments, are 

considerably larger than the electrons they are passing through.   The problem was ignored in 

fig 2 where it was assumed that the dipoles were current loops which might, or might not, be 

intersected by a random line.  This concept can hardly be applied to electron spins. Similar 

experimental results were obtained with neutrons (6).  A complete theory needs to use the 

Dirac model of the electron.  

More recently muons have been used to explore the internal magnetic fields of materials, in 

particular superconductors.   The muon spin decays at a rate dependent on the magnetic field 

at the position of the muon, and this decay can be detected since a positron is emitted.  It 

gives good results for the field distribution of flux lines in superconductors, where the field is 

varying on the scale of about half a micron.  However in a magnetised ferromagnetic material 

a field considerably less than B is detected.  This because the muons tend to spend more time 

at the sides of the atoms where the field is less than the average.  However this is not the H 

field, which is a different average. 

 

4. More Details 

In this section we elaborate on some of the questions that the treatment above raises, and dispose 

of some misconceptions. 

 

4.1. What is Magnetisation?   

This term is used to mean different things in different situations and these must not be 

confused.    The magnetisation defined above is a local quantity, averaged over a small 

( )1o o rB H Hµ χ µ µ= + = 1rµ χ= +



 8 

section of the microstructure.  In a given material it depends only on the local fields (H or B) 

and the dependence for any given material can be found in tables of material properties.  

(Only two of these three vectors are independent). This is the only meaning of M for which 

B=µo(H+M), which, as seen above, is the definition of H,  not B. 

 Magnetometers measure the total magnetic moment of a body.  This can only be defined for 

a complete body with no currents flowing in or out, (although if end effects are ignored we 

can also define a magnetisation per unit length for long cylinders).  It can be caused by both 

the atomic scale currents discussed above and also by macroscopic currents such as eddy 

currents in copper or persistent currents in a superconductor.  The total moment is Mo, where 

   (0.8) 

Here j is the current density due to both dipoles and macroscopic currents.  It gives the dipole 

component of the field outside the body, which is all that remains at large distances. 

Quadrupoles and higher harmonics decay more rapidly. 

 If Mo is divided by the volume we get the mean magnetisation, which is also often shortened 

to 'Magnetisation'. Provided there are no macroscopic currents this is equal to the integral of 

M over the volume of the body so this does not apply to superconductors in the critical state.   

If there are macroscopic currents their magnetisation has no meaning on a local scale, except 

that it can be used as the vector potential of the current density,  i.e. use curl M=J.  This can 

be a useful device in 2D geometries since a scalar Mz can be used to describe the two 

components of a current in the xy plane to ensure divJ =0.  This M is not uniquely defined. 

A common misconception is that M is the difference between the applied field and the mean 

field in a body.  This is only true for long thin cylinders parallel to the applied field. This was 

the error made in some early measurements of high Tc superconductors which were thin 

flakes. 

Papers by Jan Evetts (7) and Brian Josephson (8) showed in different ways how H and M can be 

defined in superconductors to fit in with the conventional notation of Maxwell's equations.  

However there are no local dipoles and here M is the reversible magnetisation as derived from the 

Abrikosov theory, and so is extremely small in practical Type II superconductors.  This means 

that they can be treated as carrying currents in free space so there is no need to introduce H in the 

superconductor since it is always equal to B, (both in Tesla). 

 

 4.2. What is H? 

The fields B and M have simple physical explanations, but attempts to give a similar simple 

meaning to H are varied and problematical. The original idea was that the 'H' was related to the 

force on currents and the 'B' to the induced voltage.  In free space this is analogous to the 

difference between inertial and gravitational mass in that there is a very fundamental problem in 

explaining why they are the same.  However the fact that µo appears in the expressions both for 

forces and for induced voltages is inextricably mixed with the generally accepted theory of 

relativity, so using this concept to separate the fields in materials is not sensible. 

As introduced above H merely combines the physical fields B and M in such a way as to make 

Maxwell's equations more concise and easier to solve.  However there are two reasons why H 

assumes a greater physical significance than might appear at first sight.  One is the practical one 

that the measurement of magnetic properties is most easily done by magnetising the sample with a 

coil.  If we use a short ferromagnetic sample we need a large field to magnetise it, so instead we 

use a long thin sample in a long solenoid, or better, a toroidal coil or other complete magnetic 

circuit. We then measure the flux in the sample with a coil round it and the external field from the 

current in the magnetising circuit.  If there are no transport currents H|| is continuous across the 

surface, in this geometry H in the material is equal to the H in the solenoid, i.e. the applied field 

Ho.   Also the B is uniform so we can find it by dividing the flux by the area to get the flux 
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density.   This means that the experimental graph of flux against applied field is the graph of B 

against H in the material. The data can then be applied to any point in the material in any 

geometry, since the relation between B and H in a material is independent of the geometry.  Since 

in ferromagnetic materials B and µoM are very similar in magnitude, a graph of B against M 

would be more difficult to interpret, although containing the same information in principle. A 

similar situation occurs in mechanical properties where we measure force against extension in thin 

cylinders and the use the subsequent stress strain curve in much more complex situations. 

However to conclude from this, as occasionally stated, that the H causes an M and a B does not 

make any sense.  It is like saying that a stress 'causes' a strain, or a voltage 'causes' a current, when 

there are many situations where the opposite is true (insofar as either is true).  It depends on the 

reluctance,  internal impedance,  or stiffness, of the source respectively. It is however true that H 

gives a qualitative idea of the tendency of a sample to demagnetise.   This is discussed in more 

detail below (§6). 

 H is sometimes called the 'internal field' but this is not meaningful. The 'internal field' can only 

mean either the microscopic field on an atomic scale, or its average B. Some texts say H is the 

'stray field' of a magnet.  This is described as the 'field outside the magnet',  but since this is 

usually the field that we want to use, the term 'stray' seems a little uncharitable.  It is not a useful 

concept. 

Another wrong idea is that since curlH=J, then H is only dependent on transport currents, and is 

independent of the presence of magnetic materials. This suggests that H can be calculated from 

currents alone.  If this were true we would not need the large number of expensive finite element 

software programmes which are used to calculate H.   

In most cases it is important to distinguish between H and the applied field, or external field, 

usually called Ho  or Bo. (see §4.3).  Since the applied field is normally in free space (we will not 

consider magnetic fluids), these only differ by a factor µo, and in practice Tesla is by far the most 

convenient unit for both, as well as for M. This is reinforced by the coincidental size of the Tesla, 

which is about the maximum of a ferromagnet, and only a bit less than that from most 

superconducting magnets. This convention, although not part of the SI system, also means that 

voltages are directly proportional to field changes and a µo only appears in the forces between 

magnets, and the relation of fields to currents.   It has been effectively been adopted by the 

superconductivity community and also the permanent magnet industry where the magnetisation of 

NdFeB is quoted in Tesla. They call it the 'remanence' so that it can be quoted in Tesla, but this 

rather obscures the fact that this is the magnetisation, which is almost constant even in large 

reverse fields.  

The situation was clarified (to some extent) by Josephson (8) who inverted the usual order of 

derivations by defining H as the gradient of the free energy, F, with respect to the flux 

density,  H=∇∇∇∇BF ,  i.e δF=H.δδδδB defines H.  It is consistent with an earlier definition as the 

external field parallel to a surface, although this latter one gives little clue as to fields inside 

the material.   He was then able to derive the equations of the magnetic field in materials in 

thermodynamic equilibrium, including Type II superconductors.  The theory is extended to 

irreversible materials, but it is unclear how to apply it to permanent magnets. 

From this thermodynamic starting point it follows that if H is antiparallel to B the system is 

thermodynamically unstable , since the free energy can be reduced, although the microscopic 

mechanism by which the energy is reduced may be obscure.  Josephson's treatment is 

deceptively simple, but is not suitable for undergraduates or electrical engineers, or indeed 

any but the most dedicated scholars.  However it does bring out the fundamental nature of H 

as an indication of thermodynamic equilibrium in all systems.  A non-zero curl H and 

corresponding J always implies a non-equilibrium situation, even in superconductors.  
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Therefore notwithstanding the initial remarks above about pictures of H, there is indeed a 

close, but indirect, relation between H and the tendency to demagnetise.  However the effect 

cannot always be explained in terms of reverse fields on dipoles , as discussed below in §6. 

 

 

 

4.3 The applied field 

 The applied field can only be defined for an isolated body. It is the field in the space left by the 

body if it is removed, and all currents, including all magnetisation currents, except those of the 

body, are kept constant.  It must be done this way round, rather than by adding the body to an 

existing field, as a magnet near a permeable material experiences an applied field due to its image, 

which must be preserved when the body is removed.  (However in simple geometry the applied 

field is also the field a long distance from a body). Many problems involving forces and energies 

are much more easily tackled using the applied field Ho and the total magnetic moment of a body, 

Mo, rather than the local values H and M or B which must be integrated over all space (see the 

section on energies and forces).  This is because we can express the work done on a system in 

terms of Mo and Ho, whereas to find the energies we need to integrate fields over all space which 

is algebraically intractable.  In some geometries the external and internal values are the same, but 

it is nevertheless extremely important to make clear which are being used. 

 

 

6. Demagnetising Factors 

Demagnetising factors and fields tend to be given a rather cursory treatment in physics 

courses as there is no fundamental physics involved and the algebra is straightforward.  

However the result is that in practical applications physicists tend to use results appropriate to 

paramagnetic materials for ferromagnetic materials, with results that can be wrong by a very 

large factor.  The reason is that in a paramagnetic material when an atom experiences an 

external field it creates a magnetic dipole, but since the energy is small compared with kT  

there is not much alignment with the applied field.  Hence the resultant field, even from many 

atomic dipoles, is small compared with the applied field.  Susceptibilities are very small and 

all fields are nearly equal to the applied field.  

However in ferromagnetic materials a quantum effect aligns neighbouring spins so there is a 

large local magnetisation with energies much larger than kT. The spins align with local fields 

by the movement of domain walls.  The result is that as soon as the domain walls move a 

field is generated which changes the field seen by each atom. There is a large amount of 

positive or negative feedback which, as we know from electronic circuits, leads to 

counterintuitive results.  

In this section we find local fields, i.e. not microscopic fields but fields over many atoms. We 

first need to find the fields in a body caused by its magnetisation.   We can do this simply for 

needles ,cylinders, spheres, and slabs. 
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Fig.3a.  A Uniformly Magnetised.          b) Equivalent currents.                    c) B and H. 

             Sphere 

 

We consider first a sphere with a magnetisation Μ along the x axis, fig.3a .  We find B in the 

sphere by replacing it with surface currents in free space, M sinθ , fig.3b.  These are 

clockwise round the positive x axis. From the Biot-Savart law, at the centre, a current element 

jr dθ produces a field δBx in the x direction of magnitude :- 

 

 δ Bx = µoMrδθ sinθ2πr sinθ sinθ / 4πr2   (0.9) 

 

Integrating:- Bx=2μoM/3.  Note that this is positive.  The magnetisation creates a field in the 

material parallel to the magnetisation.  This is the value of B at the centre of the sphere so 

H=B/µo-M=-1/3M so it is H, not the average field B that is opposite to M.  These fields are in 

fact uniform, (proved below).  It is only when we find H that we get a field in the opposite 

direction to the magnetisation.  

Since for thermodynamic reasons an H anti-parallel to B tends to demagnetise the sample this 

is called the demagnetisation field and 1/3 is the demagnetising factor.  To this field must be 

added any external field. 

To illustrate the large effect of the sample shape consider a permeable sphere of susceptibility 

χ in an applied field Ho. 

Then H=-1/3M+Ho and M=χH. Hence    

 M =
χHo

1+ χ / 3( )
  (0.10) 

For small susceptibility this gives the simple expression, M= χHo.  However for any 

ferromagnetic material where χ>10,  M=3Ho and H=Ho/χ  and so is very small, while 

B=µoM=3µoHo.  B in the material is three times the applied field (in Tesla) whatever the 

permeability, so long as it is larger than about ten.  

This is an example of the general principle that in most circumstances the magnetisation of a 

ferromagnetic body in an external field is of the same order as the external field, and 

independent of the permeability.  Only a long thin needle parallel to the field will have a 

magnetisation of near χHo. 

For this reason if we want to use the magnetic force to attract a permeable body (e.g. in  

motors and relays) we almost always use a magnetic circuit in which the majority of the 

reluctance is provided by the air-gap, and the term applied field has little meaning. Again the 

force will be independent of the permeability, but it is possible to reach the saturation of iron 

using copper coils in this configuration. Alternatively we use a permanent magnet, which is 

the favoured choice since the invention of NdFeB magnets.  
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Similar arguments show that the demagnetising factors for transverse cylinders, slabs, and 

needles are 1/2, 1, and 0 respectively. 

 

 

5. Microscopic fields. 

Because Maxwell's equations are so elegant and complete (at least in the form derived by 

Heaviside, which is how they are now taught), many texts avoid relating them to any 

particular atomic picture.  This is satisfactory for the more mathematically inclined, but for 

many students it is very illuminating to see how they work in in simple materials, even if this 

picture may not be completely general.  This was done above with an array of dipoles, 

although the same equations apply to a domain structure in ferromagnets which is clearly 

rather different in detail.  

 The following is the Lorentz theory of dielectrics applied to magnetic materials. Figure. 3  

shows an ellipsoid with a demagnetising factor n, magnetised in the x direction so that from 

the definition of n in the material H=-nM and B=(1-n)µoM.  We draw a sphere round a 

particular atom (in red) and divide the field on that atom into the field due to dipoles inside 

the sphere and those outside. 

It can be shown from symmetry that if the atoms are arranged in a simple cubic, hexagonal, 

or random array, the sum of the fields due to atoms inside a sphere is zero.  The field due to 

atoms outside is that due to surface currents on the outside of the ellipsoid and currents in the 

opposite direction on the surface of the sphere (fig.3b). To this is added the external field Bo 

(or Ho). 

        

 

                                               3           (a)                                                                               

(b) 

     A magnetised ellipsoid with one atom isolated                The Equivalent currents 

                                                               

We f to connect the susceptibility of a single atom to 

that of the material.  This is the Lorentz theory.  

 H = H o − nM   (0.11) 

The field on the atom, Ba, is :- 

   (0.12) 

This is a free space field so Ba=µoHa 

So 

   (0.13) 

This applies to all materials. We now add the material parameter χa, the susceptibility of a 

single atom, defined by m=χαH   where m is the moment of an isolated atom and H the field 

applied to it. The atomic density is  N.  Then 

 M = N χaBa / µo
  (0.14) 

So 

 

M 

 

J= -M 

J= M 
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 M =
3N χaH

3− N χa

  (0.15) 

This relates the susceptibility (and hence permeability) of a material to that of the atoms of 

which it is composed.  It is however less useful than it might appear.  For low susceptibilities 

the susceptibility of the material is just the simple product of the atomic susceptibility and the 

atomic density, as might be expected.  In this situation B and H are equal to the external field 

(if in the same units). 

As we increase the susceptibility, or atomic density, when the dilute approximation 

approaches 3 the material susceptibility diverges, implying ferromagnetism.  This is not the 

origin of ferromagnetism, but it does show the limits of this atomic picture in explaining 

Maxwell's equations in materials.  It only adds a correction to the dilute limit and cannot be 

used for strongly magnetic material. However it does also illustrate the fact that neighbouring 

dipoles tend to reinforce an existing magnetisation, rather than demagnetise a sample as 

suggested by the term demagnetising field.   

We now use the Lorentz picture to see how the field on an atom is related to B and H.  We 

use fig.3 and (0.12) with no external field.   

Here are the results for different shapes in zero external field (Table1.) 

 

                  Shape             n                   H              B/µµµµo                  Ba/µµµµo. 

                  Slab                 1                  -M               0                  -2/3 M 

                  Sphere           1/3              -1/3M          2/3M                    0 

                  Needle             0                  0                 M                   1/3 M 

 

                                                           Table 1 

 

We see that if the sample is a sheet normal to the magnetisation (n=1) the field on the atom is 

in the opposite direction to B,  but in the same direction as  H and equal to 2/3µoH.  This 

clearly tends to demagnetise the sample. 

However if the sample is a sphere then  Ba=0 and there is no tendency to demagnetise, while 

if the sample is a long rod parallel to M the field is 2/3µoH but in the opposite direction to H 

and the same direction as B. Thus the field due to other atoms tends to increase M so we 

should have spontaneous magnetisation.  This is surprising, and contrary to our experience, 

and also to general arguments based on reducing magnetic energy by forming closed 

domains, so where have we gone wrong?    One answer is that we cannot apply this picture to 

the outer layer of atoms, many of which experience a demagnetising field due to their 

immediate neighbours which is in the opposite direction to M.     These rotate and the 

demagnetisation spreads in from the surface until some kind of complex structure with no 

mean magnetisation is achieved.    

 (See attached avi file which shows the relaxation of a rectangular array of 2D dipoles on free 

pivots).  

However even if we hold the outer layers stationary, energy arguments tell us the material 

will still tend to demagnetise.   In fact parallel dipoles side by side are inherently unstable on 

a local scale since they will prefer to turn nose to tail, (like dogs sniffing each other's 

bottoms. As a child I was given such a pair of magnets with plastic dogs on top for 

Christmas, but I have not seen them for sale since). The connection of H to demagnetisation 

is therefore a real one, although not necessarily by providing a reverse field, as shown by 

Josephson. It can involve a collective movement of many dipoles. 
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